
Journal of Geometry and Physics 35 (2000) 93–98

Brief communication

A note on real Killing spinors in Weyl geometryq

Volker Buchholz
Humboldt Universität zu Berlin, Institute für Reine Mathematik, Rudower Chaussee 25,

D-12489 Berlin, Germany

Received 12 January 2000

Abstract

This note is dedicated to the real Killing equation on three-dimensional Weyl manifolds. Any
manifold admitting a real Killing spinor of weight 0 satisfies the conditions of a Gauduchon–Tod
geometry. Conversely, any simply connected Gauduchon–Tod geometry has a two-dimensional
space of solutions of the real Killing equation on the spinor bundle of weight 0. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

In [2], we gave an introduction to spinor geometry on Weyl manifolds and investigated the
Dirac-, Twistor-and Killing equation in this context. Concerning the real Killing equation
we presented in [2] the following result:

Theorem 1.1(see [2], Theorem 3.1).Letψ ∈ 0(Sw) be a real Killing spinor on a Weyl
manifold(Mn, c,W), i.e. there exists a densityβ ∈ 0(L−1) for which

∇S,wφ = β ⊗ νψ,

is satisfied. Then the following statements hold:
1. R = 4n(n− 1)β2.

q Supported by the SFB 288 of the DFG.
E-mail address:bv@mathematik.hu-berlin.de (V. Buchholz)

0393-0440/00/$ – see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S0393-0440(00)00014-0



94 V. Buchholz / Journal of Geometry and Physics 35 (2000) 93–98

2. w 6= 0:W is exact and Einstein–Weyl.
3. w = 0, n ≥ 4: W is exact and Einstein–Weyl.

The following equations were obtained within the proof and will play an important role in
the sequel:

µ2Ric′ ⊗ ψ = 2

(
n− 1 − n− 1

n− 2

)
∇β ⊗ ψ +

(
1 − n− 1

n− 2

)
µ12Alt ∇β ⊗ c ⊗ ψ

+R
n
νψ − µ2F ⊗ ψ, (1)

F · ψ = −4(n− 1)

n− 2
∇β · ψ. (2)

Theorem 1.1 gives no statement for the casen = 3 andw = 0. In the next section we prove
that in three dimensions the existence of a real Killing spinor of weight 0 is essentially
equivalent to the fact that this manifold is a Gauduchon–Tod geometry:

Definition 1.2 (see [4], Proposition 5). A three-dimensional Weyl manifold(M3, c,W)

is called Gauduchon–Tod geometry, if there exists a densityβ ∈ 0(L−1) such that the
following conditions are satisfied:
1. W is Einstein–Weyl;
2. R = 24β2;
3. 4∇β = ∗F .

Remark. Theκ ∈ C∞(M,R) in Proposition5 of [4] is related to theβ ∈ 0(L−1) of
Definition1.2in the following way:κl−1

g6
= −4β. For more information on Gauduchon–Tod

geometries, e.g. their classification, see[4] and the references therein.

Hence, the main result of this text is as follows:

Theorem 1.3. Let (M3, c,W) be a CSpin-manifold.
1. If ψ ∈ 0(S0) is a real Killing spinor then the space of solutions of the Killing equation

is two-dimensional and(M3, c,W) is a Gauduchon–Tod geometry.
2. Conversely, any simply connected Gauduchon–Tod geometry has a two dimensional

space of Killing spinors of weight 0.

2. The proof of Theorem 1.3

Let (M3, c,W) be a CSpin-manifold. The curvature tensor of the Weyl structureW is
given by

R = RicN1c + F ⊗ c,

where1 : T 2,0 × T 2,0 → T 4,0

ω1η := [(23)+ (12)(24)(34)− (24)− (12)(23)]ω ⊗ η, ω, η ∈ T 2,0
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is the so-called Kulkarni–Nomizu product (see [1]) and

RicN := −sym0Ric− 1
12Rc+ 1

2F (3)

is the normalized Ricci tensor ofW (see [3]).sym0 denotes the symmetric trace free part
of a (2,0)-tensor. The following lemma is a tool for calculations with Kulkarni–Nomizu
products in spin geometry:

Lemma 2.1. Letω be a(2, 0)-tensor. Then the following algebraic identity holds in any
dimension:

µ34ω1c = 2Alt νµ2ω − 2Altω.

Proof.

µ34ω1c=µ34[(23)+ (12)(24)(34)− (24)− (12)(23)]ω ⊗ c

= [µ24 + (12)µ32 − µ32 − (12)µ24]ω ⊗ c

= [µ23 + (12)µ32 − µ32 − (12)µ23]ω ⊗ c

= [−2µ32 + 2tr23 + 2(12)µ32 − 2(12)tr23]ω ⊗ c

= −2[µ32 − (12)µ32]ω ⊗ c − 2Altω

= −2[1 − (12)]νµ2ω ⊗ c − 2Altω

= 2Alt νµ2ω − 2Altω. �

Lemma 2.2. Let 4∇β = ∗F be satisfied on(M3, c,W). Then the following identities are
true for any spinorψ ∈ 0(Sw):

1
4Alt νµ2F ⊗ ψ − Alt ∇β ⊗ νψ − 1

2F ⊗ ψ = 0 (4)

and

(ν∇β − ∇β · ν) · ψ − 1
2µ

2F ⊗ ψ = 0. (5)

Proof. Denote by(e1, e2, e3) a local weightless conformal frame on(M3, c) as well as
(σ1, σ2, σ3) its dual. In dimension 3 we have the important relation

ei · ej · ψ = −
3∑
k=1

εijkek · ψ. (6)

Hereεijk denotes the Levi–Civita symbol. Since the∗-operator on 2-forms is defined by the
formula

∗F = 1

2

3∑
i,j=1

F(ei, ej ) ∗ (σi ∧ σj ) = 1

2

3∑
i,j,k=1

F(ei, ej )εijkσk
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we can rewrite the assumption as follows:

8∇ekβ =
3∑

i,j=1

εijkF(ei, ej ). (7)

We have

F · ψ =
3∑

i,j=1

F(ei, ej )ei · ej · ψ = −
3∑

i,j,k=1

εijkF(ei, ej )ek · ψ

= −8
3∑
k=1

(∇ekβ)ek · ψ = −8∇β · ψ. (8)

Using (6) and (7) we get

1
4Alt νµ2F ⊗ ψ − Alt ∇β ⊗ νψ − 1

2F ⊗ ψ

= 1

4

3∑
i,j,k=1

F(ej , ek)σi ∧ σj ⊗ ei · ek · ψ −
3∑

i,j=1

(∇ei β)σi ∧ σj ⊗ ej · ψ

−1

4

3∑
i,j=1

F(ei, ej )σi ∧ σj ⊗ ψ

= −1

4

3∑
i,j=1

F(ej , ei)σi ∧ σj ⊗ ψ + 1

4

3∑
i,j,k=1
i 6=k

F (ej , ek)σi ∧ σj ⊗ ei · ek · ψ

−
3∑

i,j=1

(∇ei β)σi ∧ σj ⊗ ej · ψ − 1

4

3∑
i,j=1

F(ei, ej )σi ∧ σj ⊗ ψ

= 1

4

3∑
i,j,k=1

εkilF(ej , ek)σi ∧ σj ⊗ ej · ψ − 1

8

3∑
i,j,k,l=1

εkliF(ek, el)σi ∧ σj ⊗ ej · ψ

= 1

4

3∑
i,j,k=1

εkijF(ej , ek)σi ∧ σj ⊗ ej · ψ

−1

8

3∑
i,j,k,l=1
j=k

εjliF(ej , el)σi ∧ σj ⊗ ej ·ψ−1

8

3∑
i,j,k,l=1
j=1

εkjiF(ek, ej )σi ∧ σj ⊗ ej · ψ

= 1

4

3∑
i,j,k=1

εkijF(ej , ek)σi ∧ σj ⊗ ej · ψ

−1

8

3∑
i,j,l=1

εljiF(ej , el)σi ∧ σj ⊗ ej ·ψ−1

8

3∑
i,j,k=1

εkijF(ej , ek)σi ∧ σj ⊗ ej ·ψ=0,
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i.e. we have shown (4). Contracting (4) by Clifford multiplication, using (8) andµ2ν =
−νµ1 − 2Id yields

0= 1
4µ

2Alt νµ2F ⊗ ψ − µ2 Alt ∇β ⊗ νψ − 1
2µ

2F ⊗ ψ

= 1
4µ

2νµ2F ⊗ ψ − µ2∇β ⊗ νψ − 1
2µ

2F ⊗ ψ − 1
4µ

1νµ2F ⊗ ψ + µ1∇β ⊗ νψ

= −1
4νF · ψ − 1

2µ
2F ⊗ ψ + 3∇β ⊗ ψ − 1

2µ
2F ⊗ ψ + 3

4µ
2F ⊗ ψ + ∇β · νψ

= −1
4νF · ψ − 1

2µ
2F ⊗ ψ + 3∇β ⊗ ψ − 1

2µ
2F ⊗ ψ + 3

4µ
2F ⊗ ψ + ∇β · νψ

= ν∇β · ψ + ∇β ⊗ ψ − 1
4µ

2F ⊗ ψ = 1
2(ν∇β − ∇β · ν) · ψ − 1

4µ
2F ⊗ ψ. �

Hence (5) is true.

Proof of Theorem 1.3. Let ψ ∈ 0(S0) be a real Killing spinor. The first statement fol-
lows immediately from the existence of an equivariant quaternionic structure on the spinor
module, which commutes with the Clifford multiplication. By Theorem 1.1 and its proof
we have

R = 24β2, F · ψ = −8∇β · ψ.
Sinceψ vanishes nowhere the second equation is equivalent to

4∇β = ∗F
by (6). Therefore we have already verified the conditions 2 and 3 of a Gauduchon–Tod
geometry. It remains to be proved that the manifold is Einstein–Weyl. To this end we have
to simplify (1) by means ofR = 24β2 andRic′ = sym0Ric+ 1

3Rc− 1
2F to

µ2sym0Ric′ ⊗ ψ = −(∇β · ν − ν∇β) · ψ − 1
2µ

2F ⊗ ψ.

But the right-hand side vanishes according to (5). HenceW is Einstein–Weyl.
Conversely, letW be a simply connected Gauduchon–Tod geometry. It is sufficient to

show thatS0 is flat with respect to∇β = ∇S,0 − β ⊗ ν. To this end, we have to prove that
the curvature of∇β vanishes. We use the properties of Gauduchon–Tod geometries given
in Definition 1.2, the result of Lemma 2.1 and the Eq. (4) andRS,0 = 1

4µ
34RicN1c =

−1
4µ

34( 1
12Rc− 1

2F)1c.

Rβ = Alt ∇β ◦ ∇β = Alt ∇β ◦ (∇S,0 − β ⊗ ν)

= Alt(∇S,0 ◦ ∇S,0 − ∇β ⊗ ν − (12)β ⊗ ν∇S,0 − βν∇S,0 + β2νν)

=RS,0 − Alt(∇β)ν + β2 Alt ν12

= −1
4µ

34( 1
12Rc− 1

2F)1c − Alt(∇β)ν + β2Alt ν12

= −1
4(

1
6R Alt νµ2c − Alt νµ2F + 2F)− Alt(∇β)ν + β2 Alt ν12

= − 1
24R Alt ν12 + 1

4Alt νµ2F − 1
2F − Alt(∇β)ν + β2 Alt ν12

= 1
4Alt νµ2F − 1

2F − Alt(∇β)ν = 0. �
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