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Abstract

This note is dedicated to the real Killing equation on three-dimensional Weyl manifolds. Any
manifold admitting a real Killing spinor of weight 0 satisfies the conditions of a Gauduchon—-Tod
geometry. Conversely, any simply connected Gauduchon—Tod geometry has a two-dimensional
space of solutions of the real Killing equation on the spinor bundle of weight 0. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

In [2], we gave an introduction to spinor geometry on Weyl manifolds and investigated the
Dirac-, Twistor-and Killing equation in this context. Concerning the real Killing equation
we presented in [2] the following result:

Theorem 1.1(see [2], Theorem 3.1)Lety € I'(S™) be a real Killing spinor on a Weyl
manifold(M", c, W), i.e. there exists a densify e I'(£~1) for which
Vi =@ vy,

is satisfied. Then the following statements hold:
1. R=4n(n — 1)p2.
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2. w # 0: W is exact and Einstein—Weyl.
3. w=0,n > 4: W is exact and Einstein—Weyl.

The following equations were obtained within the proof and will play an important role in
the sequel:

MZRid®1//=2(n—1—”—_1)Vﬂ®w+(1—”—_l)M12A|tVﬁ®c®w
n—2 n—2

+vy — P F Y, ®
4(n — 1
Foyp=-""Dvpy @)

Theorem 1.1 gives no statement for the case 3 andw = 0. In the next section we prove
that in three dimensions the existence of a real Killing spinor of weight 0 is essentially
equivalent to the fact that this manifold is a Gauduchon—Tod geometry:

Definition 1.2 (see [4], Proposition 5). A three-dimensional Weyl manifold®, ¢, W)
is called Gauduchon-Tod geometry, if there exists a dertsity I'(£~1) such that the
following conditions are satisfied:

1. W is Einstein—-Weyl;

2. R = 24p2%;

3. 4VB = xF.

Remark. Thex € C®(M,R) in Proposition5 of [4] is related to the e I'(£~1) of
Definition1.2in the following wayzclg—z1 = —48. For more information on Gauduchon-Tod
geometries, e.g. their classification, §égand the references therein

Hence, the main result of this text is as follows:

Theorem 1.3. Let (M3, ¢, W) be a CSpin-manifold

1. If ¥ € I'(89) is a real Killing spinor then the space of solutions of the Killing equation
is two-dimensional andM2, ¢, W) is a Gauduchon—Tod geometry.

2. Conversely, any simply connected Gauduchon—Tod geometry has a two dimensional
space of Killing spinors of weight 0

2. The proof of Theorem 1.3

Let (M3, ¢, W) be a CSpin-manifold. The curvature tensor of the Wey! structiris
given by
R=Rid"Ac+ F®c,

whereA : 720 x 720 _, 740

wAn :=[(23) + (12)(24(34) — (24 — (12(23]w® 1, w,ne T>°
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is the so-called Kulkarni-Nomizu product (see [1]) and
Ric" ;= —symRic— LRc+ 3 F (3)

is the normalized Ricci tensor d¥ (see [3]).syny denotes the symmetric trace free part
of a (2,0)-tensor. The following lemma is a tool for calculations with Kulkarni-Nomizu
products in spin geometry:

Lemma 2.1. Letw be a(2, 0)tensor. Then the following algebraic identity holds in any
dimension:

1PoAc = 2Altvlw — 2Alt .

Proof.

poAc =323 + (12)(24)(34) — (24) — (12(23)]w ® ¢
=[u®*+ (12u* - 13 - 12w ® ¢
=+ 12p% - 4P - 12pPo @ c
=[-2u%2 + 2B + 2122 — 212w ® ¢
=2[u* - 124w ® c — 2Altw
=-2[1- 12’0 @ c — 2Altw
= 2Altvu’w — 2Alt w. a

Lemma 2.2. Let4V B = xF be satisfied oiiM3, ¢, W). Then the following identities are
true for any spinony € I'(S%):

TAVUPF @y —AltVB® vy — SF @y =0 (4)
and

(WB—VB-v) -y — Ju’F @y =0. (5)

Proof. Denote by(e1, e2, e3) a local weightless conformal frame ¢ 3, ¢) as well as
(01, 02, 03) its dual. In dimension 3 we have the important relation

3
ej-ej - = —Zéijkek I (6)
=1

Hereeijk denotes the Levi—Civita symbol. Since th@perator on 2-forms is defined by the
formula

3 3
1 1
*F = Elile(ei,ej) s no) =3 ;1F(€i,€j)€ijko'k
L,]= L, ], K=
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we can rewrite the assumption as follows:

3
8V B =) cikFleiej). (7)

i,j=1

We have

3 3
F-y= ZF(ei,ej)e,» cej Y =— Z €k F (e, ej)ex - ¥

i,j=1 i,j k=1
3
=-8) (VoBler- ¥ = —8VS - Y. (8)
k=1

Using (6) and (7) we get

IAtVUPF @y —AtVB @ vy — F Q¢

3 3
1
T4 Y Fleje)oinoj@ei-ex-v— Y (VuBloi Aoj@ej-y
i,j,k=1 ij=1

3
1
~2 Z F(ei,ej)oi Noj @Y

i,j=1

13 1S
=—ZZF(€j,€i)0i/\Uj®¢+Z Z Flej,ex)oi Noj®ei-ex -y

i,j=1 i jk=1

ik

3 1 3
=) (VaP)oi Noj®ej =7 Fleiej)oi Aoy @Y

i.j=1 i,j=1
3 3
1 1
=2 Z eilF(ej,ex)oi NojQej-f — 8 Z ek Fex,e)oi Noj®ej -y
i,j,k=1 i,j.k, =1
3
1
=1 Z ekijF(ej, ex)oi NojQej -y
i, jk=1
3 3
1 1
~3 Z €jii Fej, e)oi Aoj ®6j-1/f—§ Z ejiF (e, ej)oi NojQej- Y
ijhki=1 ijk =1
j=k j=1
3
1
— l_l- Z EkijF(ej,ek)O',' ANojQej Y
ijk=1

3 3
1 1
——= Z €jiF(ej,e)oi Noj®ej-fr—— Z exijF(ej, ex)oi Noj @ ej- =0,
8ijl—1 8ijk—1
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i.e. we have shown (4). Contracting (4) by Clifford multiplication, using (8) aRd =
—vul — 2Id yields
0=3u?Altvu®F ® Y — n2 AtV @ vy — 2P F @ ¥
=3 PPF @y — pPVBR vy — SuPF @y — sutvpPF @ ¢ + nlvp @ vy
=—JvF - — 3’ F @Y +3VBQ Y — 3u*F @Y + Ju°F @Y + VB - v
=—2F Y- lWPF Ry +3VBRY — U F @Y + SuPF @y + VB - vy
=B Y+ VBRY — JuPF @y =30V —VB-v) -y — JuPFey. O

Hence (5) is true.

Proof of Theorem 1.3. Let ¥ € I'(5%) be a real Killing spinor. The first statement fol-
lows immediately from the existence of an equivariant quaternionic structure on the spinor
module, which commutes with the Clifford multiplication. By Theorem 1.1 and its proof
we have

R=24p% F -y =-8VB-y.
Sinceyr vanishes nowhere the second equation is equivalent to
4V B = xF

by (6). Therefore we have already verified the conditions 2 and 3 of a Gauduchon-Tod
geometry. It remains to be proved that the manifold is Einstein—Weyl. To this end we have
to simplify (1) by means oR = 2482 andRic = sympRic+ %Rc— %F to

u?SymRic @ y = —(VB-v —vVB) - — JuF @ .

But the right-hand side vanishes according to (5). Heiids Einstein—Weyl.

Conversely, letW be a simply connected Gauduchon—Tod geometry. It is sufficient to
show thats? is flat with respect t&/# = V5.0 — 8 ® v. To this end, we have to prove that
the curvature of/#? vanishes. We use the properties of Gauduchon—Tod geometries given
in Definition 1.2, the result of Lemma 2.1 and the Eq. (4) &° = ,3/Ric¥ Ac =
— P (EHRe— 3F)Ac,

RE=AVE o VA = AltVA o (VS0 — B @)
=Al(VS 0o V30— v v — (1280 vVS0 — guvS0 4 g2h)
=R50 — Al(VB)v + B2 Altv??
=—2u3(&Re— $F)Ac — Al(VB)v + p2Altv12
= —2(ERAltvu?c — Altvp®F + 2F) — Al(V B)v + B2 Altv1?
= — 2 RAILVZ + 2AItv®F — 3F — Alt(VB)v + 2 Altv!2

= 3Altvp®F — 1F — Alt(vg)v = 0. O
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